Síntesis directa de un nuevo tensoactivo tipo Gemini basado en polidimetilsiloxano
DOI:
https://doi.org/10.5281/zenodo.18556503Palabras clave:
Polidimetilsiloxano, Tensoactivo Gemini, CMC, EORResumen
La recuperación mejorada de petróleo (EOR) en yacimientos no convencionales requiere el desarrollo de tensoactivos con alta estabilidad térmica y química en condiciones extremas. En este trabajo se reporta la síntesis de un novedoso tensoactivo tipo Gemini a base de polidimetilsiloxano (PDMS) con un rendimiento del 60%. La síntesis se realizó en un solo paso sin catalizador metálico, ofreciendo una ruta simplificada frente a métodos convencionales, a partir de PDMS con grupos terminales diglicidil éter (PDMS-DGE) y 1-octanol. La estructura fue confirmada mediante Resonancia Magnética Nuclear de protón (1H-RMN) y espectroscopia infrarroja (FT-IR). Las propiedades superficiales, evaluadas por el método de ángulo de contacto sésil, determinaron una Concentración Micelar Crítica (CMC) de 0.88 mM. Este valor indica una alta eficiencia o rendimiento en la formación de micelas y en la reducción de la tensión interfacial utilizando bajas concentraciones del tensoactivo.
Citas
Alzahid, Y. A.1, Mostaghimi, P., Gerami, A-, Singh, A., Privat, K., Amirian T., Armstrong, R. T. (2018) Physio-Chemical Analysis of Amide and Amine. Scientific Reports, 8, 15518 https://doi.org/10.1038/s41598-018-33495-8
Alcalde, M.A., Jover, A., Meijide, F., Galantini, L., Pavel, N.V., Antelo, A., Tato, J.V. (2008) Synthesis and characterization of a new gemini surfactant derived from 3α,12α-dihydroxy-5-cholan-24-amine (steroid residue) and ethylenedi-amintetraacetic acid (spacer), Langmuir 24 6060–6066
Alkawareek, M. Y., Akkelah, B. M., Mansour, S. M., Amro, H. M., Abulateefeh, S. R., Alkilany, A. M. (2018) Simple Experiment to Determine Surfactant Critical Micelle Concentrations Using Contact-Angle Measurements, J. Chem. Educ., 95(12) 2227–2232. https://doi.org/10.1021/acs.jchemed.8b00276
Ang, A.W., Jiang, L., Mao, G., Liu, Y. (2002) Direct force measurement of silicone- andhydrocarbon-based ABA triblock surfactants in alcoholic media by atomic forcemicroscopy, J. Colloid Interface Sci. 256, 331–340. https://doi.org/10.1016/j.colsurfa.2005.09.032
Arcos-Casarrubias, J. A., Vázquez-Torres, H., Granados-Olvera, J. A., Cedeño, J. A., Cervantes-Uc, J. M. (2022) Viscoelastic behavior and toughness of the DGEBA epoxy resin with 1,2‑diaminocyclohexane: effect of functionalized poly(dimethylsiloxane), diglycidyl ether, PDMS‑DGE, pre‑reacted with 1,2‑diaminocyclohexane, Polymer Bulletin 79, 2871–2901. https://doi.org/10.1007/s00289-021-03607-y
Belhaj, A. F., Elraies, K. A., Alnarabiji, M. S., Shuhli, J. A. B. M., Mahmood, S. M., Ern, L. W. (2019). Experimental Investigation of Surfactant Partitioning in Pre-CMC and Post-CMC Regimes for Enhanced Oil Recovery Application. Energies, 12(12), 2319. https://doi.org/10.3390/en12122319
Chung, D.W., Lim, J.C., (2009) Study on the effect of structure of polydimethylsiloxane grafted with polyethyleneoxide on surface activities, Colloids Surf. A: Physic-ochem. Eng. Aspects 336, 35–40. https://doi.org/10.1016/j.colsurfa.2008.11.020
Guerrero-Hernández, L., Meléndez-Ortiz, H.I., Cortez-Mazatan, G.Y., Vaillant-Sánchez, S., Peralta-Rodríguez, R.D. (2022) Gemini and Bicephalous Surfactants: A Review on Their Synthesis, Micelle Formation, and Uses. Int. J. Mol. Sci. 23, 1798. https://doi.org/10.3390/ijms23031798
Hassan, A., Jumbri, K., Ramli, A., Borhan, N. (2021) Poly(dimethylsiloxane)-Modified Defoamer for Efficient Oil−Water Separation, ACS Omega, 6, 14806-1418. https://doi.org/10.1021/acsomega.1c00350
Hernandez, J.D., Gama G. (2024), Synergy between surfactants’ stiffness and concentration on their self-assembly into reverse micelles as water droplet carriers in nonpolar solvents, PLoS ONE 19(2): e0294913. https://doi.org/10.1371/journal.pone.0294913
Hill, R.M., (2002), Silicone surfactants new development, Curr. Opin. Colloid Interface Sci. 7, 255–261. https://doi.org/10.1016/S1359-0294(02)00068-7
Kamal, M. S. A (2015), Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery, J Surfact Deterg., 19 (2), 223-236. https://doi.org/10.1007/s11743-015-1776-5
Liang, Z., Peng, J., Xu, Y., Wang, H., (2024) Synthesis and properties of carboxyl-modified polyether block silicone surfactants. Polym. Bull. 81, 17253–17264. https://doi.org/10.1007/s00289-024-05518-0
Lin, L, Chee-Chan, W., Keng-Ming, C., Po-Chang, L. (2011) Synthesis and physicochemical properties of nonionic Gemini surfactants with a sulfonate spacer. Colloids and Surfaces A: Physicochem. Eng. Aspects 386, 65– 70 https://doi.org/10.1016/j.colsurfa.2011.06.031
Lin, L, Chee-Chan, W., Keng-Ming, C., Po-Chang L. (2013) Synthesis and physicochemical properties of silicon-based gemini surfactants, Colloids and Surfaces A: Physicochem. Eng. Aspects, 436, 881-889. https://doi.org/10.1016/j.colsurfa.2011.06.031
Ni, X., Yuan, G. M., Chen, S. L., Cheng, Y. (2009) Synthesis and compounding of polyether modified polysiloxane crude oil defoamer. Oilfield Chem., 26, 153−157.
Raupov, I., Rogachev, M., Shevaldin, E. (2025). Review of Formation Mechanisms, Localization Methods, and Enhanced Oil Recovery Technologies for Residual Oil in Terrigenous Reservoirs. Energies, 18(21), 5649. https://doi.org/10.3390/en18215649
Stevens, C.V., Merigg, A., Eristeropoulou, M., Christov, P.P., Booten, K., Levecke, B., Vandamme, A., Pittevils, N., Tadros, T.F. (2001) Polymeric surfactants based on inulin, apolysaccharide extracted from chicory. 1. Synthesis and interfacial properties, Biomacromolecules 2, 1256–1259.
Pérez, L., Pinazo, A., Pons, R., Infante, M-R. (2014) Gemini surfactants from natural amino acids, Advances in Colloid and Interface Science, 205, 134-155. https://doi.org/10.1016/j.cis.2013.10.020
Yang, Z., Xuan ,W., Yixiao, S., Dan, L., Jiaen Q., Chuan, W., Hong, D., Qinghua, P., Zhirong, Q., and Yanjiang S. (2025) Epoxy-Functionalized Polysiloxane and DOPO Synergistically Enhance Flame Retardancy of Epoxy Resin Composites, ACS Applied Polymer Materials 7 (8) 5198-5211 https://doi.org/10.1021/acsapm.5c00531
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Vanessa Martínez Cornejo, Jose Antonio Arcos Casarrubias, Salvador López Morales, Gerardo Cedillo Valverde

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
